Asian Carp and eDNA

In 2009 a team of scientists from the University of Notre Dame and The Nature Conservancy (TNC) discovered that two species of highly invasive Asian Carp were much closer to the Great Lakes than federal and state officials had realized. Those two species, bighead carp and silver carp, have already done extensive environmental damage to the Illinois River—and much of the Mississippi River—by completely altering the food web in sections of those two major watersheds. There has been enormous concern throughout the region that if Asian carp entered the Great Lakes they could severely impair the lakes’ $7 billion annual sport and commercial fishing industries.

Scientists from Notre Dame and The Nature Conservancy located the Asian carp invasion through a cutting-edge technique called “environmental DNA” or “eDNA.” From the summer of 2009 through May of 2010, those scientists collected and analyzed more than 1,000 two-liter water samples from the Chicago Sanitary & Ship Canal, as well as other water bodies in the Chicago metropolitan area. Then, using a combination of high-tech genetic tools, they sifted those samples to find traces of eDNA from all sorts of species, including Asian carp.

In addition to showing that the invasive fish were much closer to the Great Lakes than people believed, the research showed that eDNA is superior to traditional methods for locating and monitoring aquatic species invasions. While so far the eDNA technology has only been used on alien species like Asian carp, Notre Dame’s scientists believe that the eDNA methodology has strong promise in endangered species detection and monitoring as well. The scientists’ work has now been expanded to a search for Asian carp eDNA throughout large swaths of the Great Lakes watershed.

video platform video management video solutions video player

News

Notre Dame on front lines in war against Asian carp: eDNA is forensic detective work involving fish genetics

March 08, 2015 • Author: Tom Henry, The Blade • Categories: Asian Carp and eDNA

mike

SOUTH BEND, Ind. — Twenty years ago, Asian carp imported by Southern fish farms began their high-profile journey along the mighty Mississippi River toward southern Lake Michigan in Chicago, their most probable entry point into the Great Lakes.

Now, some of the most important research to help fend them off is being generated inside the University of Notre Dame’s Galvin Life Sciences Center, barely more than a Hail Mary pass from the school’s iconic football stadium.

The relatively nondescript academic hall is home to Notre Dame’s department of biological sciences — but also some of the Great Lakes region’s top science nerds, who have used laboratories there since 2009 to invent and improve upon a cutting-edge research technique that is quickly becoming one of the most powerful tools for detecting microscopic bits and pieces of fish, plants, aquatic insects, and other organisms in our waterways.

Called eDNA, for environmental DNA, the process developed six years ago was as much of a watershed moment in the ongoing battle against fugitive fish as the great Mississippi River floods of 1995 that made water levels so high that Asian carp escaped from Southern fish hatcheries that had imported them to eat pond scum.

Think of it as forensic detective work involving fish genetics.

Asian carp pose one of the worst threats ever to the Great Lakes region’s $7 billion recreational and commercial fishing industries, the backbone of thousands of jobs and a lake-based tourism industry worth about $12 billion a year in Ohio alone.

A game changer

Scientists have long characterized and assessed what’s on land, mostly from what they find in animal feces.

But until eDNA was developed, that wasn’t being done at the microscopic level in the water column. Such material is typically fish scales, cells, feces, or mucus found in the top 2 inches of the water column.

Under the direction of David Lodge, director of the Notre Dame Environmental Change Initiative, researchers in 2009 developed eDNA for the U.S. Army Corps of Engineers. The agency requested it to help hunt for any Asian carp evidence near Chicago — apparently not realizing at the time how eDNA was going to become a game-changer.

When the corps got an unexpected result — Asian carp DNA beyond Chicago-area electrical barriers the government operates to keep invasive fish out of Lake Michigan — Mr. Lodge was ordered to defend the process in court.

The eDNA method of detecting genetic material was ruled scientifically accurate, despite the corps’ challenge. It was peer-reviewed and published in Conservation Letters, the flagship academic journal of the Society for Conservation Biology, and was vetted by the U.S. Environmental Protection Agency.

In subsequent years, U.S. Fish and Wildlife scientists — using Notre Dame’s eDNA technique — have found Asian carp eDNA in many more Chicago-area water samples, as well as many drawn from western Lake Erie and other parts of the Great Lakes region — including the Maumee River in downtown Toledo.

POSTDOCTORAL POSITION(S) IN CONSERVATION BIOLOGY

January 09, 2015 • Author: Alex Gumm • Categories: Asian Carp and eDNA

At least one postdoctoral research position is available to pursue collaborative projects in conservation biology that would inform the management and policy of aquatic invasive species. The postdoctoral fellow(s) would join an interdisciplinary team of researchers, contribute to multiple projects, and would lead one or more subprojects involving: characterization of aquatic (freshwater and marine) communities with eDNA; quantitative analysis to forecast species dispersal and range changes caused by shipping and other vectors, and their interaction with other anthropogenic drivers (e.g., climate change); quantification of the ecological and economic impacts of invasions; and management and policy of invasive species at regional or global scales. Intellectual leadership would be expected, with the choice of topic(s) depending on experience and interests. Opportunities for collaborations exist with computer scientists, economists, and policy experts. The postdoc(s) would also assist with the organization and administration of projects, and contribute to on-going publication preparation. Funding is available for at least two years. Applicant screening is rolling; the desired start date is as soon as possible during spring 2015. Salary and benefits will be competitive. The postdoc would be supervised by David Lodge

Study shows Asian carp could establish in Lake Erie with little effect to fishery

August 07, 2014 • Author: William G. Gilroy • Categories: Asian Carp and eDNA

common carp

If bighead and silver carp were to establish in Lake Erie, local fish biomass is not likely to change beyond observations recorded in the last three decades, according to a study published in the journal Conservation Biology on Thursday (Aug. 6) by a group of scientists from the University of Notre Dame, Resources for the Future, U.S. Forest Service, University of Michigan and the NOAA Great Lakes Environmental Laboratory.

Biologist David Lodge named Jefferson Science Fellow

July 09, 2014 • Author: William G. Gilroy • Categories: Asian Carp and eDNA , Environmental Genomics, and Transportation Networks, Climate Change, and the Spread of Invasive Species

davidmlodge

David Lodge, Ludmilla F. and Stephen J. Galla Professor of Biological Sciences at the University of Notre Dame and a world-renowned expert on invasive species, has been named a 2014-15 Jefferson Science Fellow

Can we eat away invasive species? Probably not, but that doesn’t mean we shouldn’t try

June 17, 2014 • Author: Hannah Newman • Categories: Asian Carp and eDNA and Transportation Networks, Climate Change, and the Spread of Invasive Species

EATING TO EXTINCTIONlionfish_sushi_roll

 

My quest to understand invasivorism began with a plate of lionfish tacos in Manhattan’s Lower East Side. The dish is a staple on the menu at Norman’s Cay

Read All Asian Carp and eDNA News